pushPIN ${ }^{\text {TM }}$ Heat Sink Assembly

ATS Part\#:ATS-11C-144-C2-R0

Description: pushPIN ${ }^{\text {TM }}$ HS ASMBLY,COARSE-PITCH,STRAIGHT, HOLE PATTERN:LEFT-TABBED,BLUE,T766
Heat Sink Type: pushPIN ${ }^{\text {TM }}$ Heat Sink Assembly
Heat Sink Attachment: pushPIN ${ }^{\text {TM }} /$ Spring Kit

Features \& Benefits

» Quick Attachment - Push pins feature a flexible barb at the end designed to engage with pre-drilled holes in a PCB.
» Compression Springs add the necessary force to hold the assembly together for secure attachment. Select from over 21 different springs to achieve precise force required.
" Push Pin Material available in brass or plastic in 10 sizes ranging from 920 mm in length. Stainless steel hardware kit available for more secure attachment. Visit www.qats.com for available options.
"Heat Sinks Designed for All Airflow Conditions. Select from over 112 fine pitch HS designed for high velocity air flows and 98 course pitch HS designed for low velocity air flow conditions.
"Pre-assembled with phase-changing material for increased thermal performance. Double-sided thermal tape and no TIM options available to meet application-specific requirements.
» Lightweight, aluminum HS extruded from AL6063 provide optimal heat transfer with a blue anodized finish.
" All components are RoHS and REACH compliant.
" Industry standard hole pattern. Recommended through hole size is 3.175 mm

AIR VELOCITY - LFM (m/s)			$\begin{gathered} 100 \\ (0.5) \end{gathered}$	$\begin{gathered} 200 \\ (1.0) \end{gathered}$	$\begin{gathered} 300 \\ (1.5) \end{gathered}$	$\begin{gathered} 400 \\ (2.0) \end{gathered}$	(2.5)	$\begin{gathered} 600 \\ (3.0) \end{gathered}$	(3.5)	Fin Pitch	Fin Type	Hole Pattern
Thermal Resistance ${ }^{\circ} \mathrm{C} / \mathrm{W}$	Unducted Flow		5.52	3.38	2.74	2.40	2.17	2.01	1.88	COARSEPITCH	STRAIGHT	LEFT- TABBED
	Ducted Flow		3.38	2.54	2.17	1.95	1.79	1.67	1.57			
P	duc	etai										
N				mens				P				inis
		A	B	C	E			+				Inis
ATS-11C-144	2-R0	30	30	25	35	35		-PP-03	ATS-P	S-11	66	Je ANODIZED
						1) ${ }_{\text {2) }}^{\text {2) } \mathrm{D}}$	TES: ension A ension B ension C ension E ension F mal perfo by applic reserves gn or per certifies act ATS	he length he width the heat s he distan he distan mance dat on. e right tp mance. at this hea learn abou	the heat s the heat sin k height fro between h between h are provide date or cha sink assem custom opt	k in the direc k perpendicul the bottom o les perpendic les in the dire for reference nge its produc is RoHS-6 a ons available.	of the flow. the flow direc base to the to the directio of flow. . Actual perfo thout notice to EACH compli	. of the fin flow. ance may mprove the

For Illustration Purposes ONLY.

