MOSFET - Power, Single N-Channel, DUAL COOL™, **DFN8**

80 V, 4.0 mΩ, 136 A

NTMFSC004N08MC

Features

- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

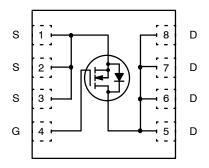
- Orring FET/Load Switching
- Synchronous Rectifier
- DC-DC Conversion

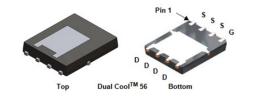
MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	80	V
Gate-to-Source Voltag	е		V_{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State			136	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	Olale		P _D	127	W
Continuous Drain Current R _{0,JA} (Note 1, 2)	Steady State	T _A = 25°C	I _D	86	Α
Power Dissipation R _{θJA} (Note 1, 2)	State A		P _D	51	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	487	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +150	°C
Source Current (Body Diode)			I _S	157	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 55 A, L = 0.1 mH)			E _{AS}	178	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

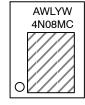
- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.




ON Semiconductor®

www.onsemi.com

V _{SSS}	R _{SS(ON)} MAX	I _D MAX	
80 V	4.0 mΩ @ 10 V	136 A	
	8.5 mΩ @ 6 V	130 A	


N-Channel MOSFET

DFN8 5x6.15 **CASE 506EG**

MARKING DIAGRAM

4N08MC= Specific Device Code

= Assembly Location

WL = Wafer Lot = Year = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 1)		°C/W
$R_{ heta JA}$	R _{θJA} Junction-to-Ambient – Steady State (Note 1)		

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC004N08MC	4N08MC	DFN8 5x6.15 (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain - to - Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		80			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			0.05		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V 0.V.V 00.V	T _J = 25°C			10	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$	T _J = 125°C			250	
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	250 μΑ	2.0	2.9	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / I _J	I _D = 250 μA, ref to 25°C			-6.5		mV/°C
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	44 A		3.1	4.0	mΩ
	,	V _{GS} = 6 V, I _D = 22 A			5.0	8.5	1
Gate-Resistance	R_{G}	T _A = 25°C			1.8		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 40 V			2980		pF
Output Capacitance	Coss				950		1
Reverse Transfer Capacitance	C _{RSS}				50		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 6 V, V _{DS} = 40 V, I _D = 22 A			27.8		nC
Total Gate Charge	Q _{G(TOT)}				43.4		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 10 V, V _{DS} = 40 V, I _D = 22 A			15		
Gate-to-Drain Charge	$Q_{\overline{GD}}$				7		
SWITCHING CHARACTERISTICS (Not							
Turn – On Delay Time	td(ON)				11.7		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} =	= 40 V,		21.5		
Turn – Off Delay Time	^t d(OFF)	$I_D = 44 \text{ A}, R_G = 2.5 \Omega$			28.7		
Fall Time	t _f				5.4		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	V 0V 1 44 5	T _J = 25°C		0.83	1.30	V
	$V_{GS} = 0 \text{ V, } I_{S} = 44 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$	T _J = 125°C		0.69		1	
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI_S/dt = 100 A/ μ s, I_S = 44 A			44		ns
Reverse Recovery Charge	Q _{RR}				50		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

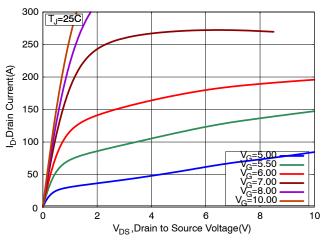


Figure 1. On-Region Characteristics

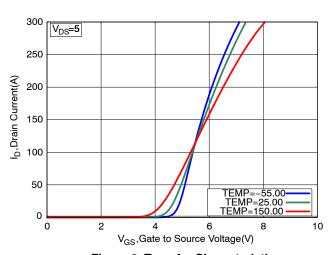


Figure 2. Transfer Characteristics



Figure 3. On-Resistance vs. V_{GS}

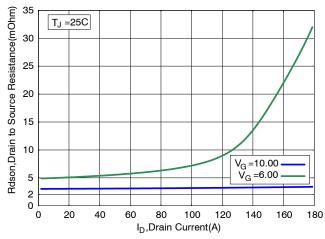


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

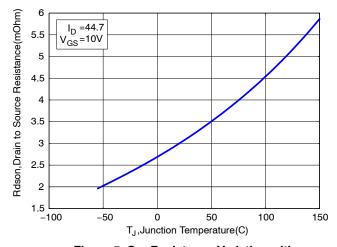


Figure 5. On–Resistance Variation with Temperature

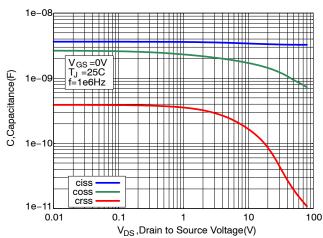
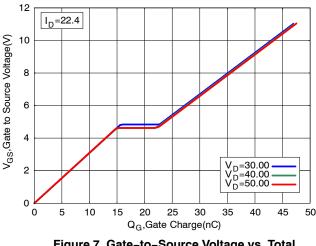
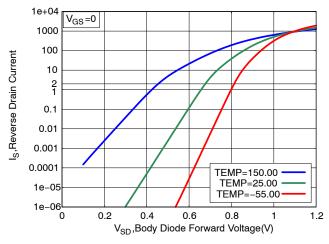



Figure 6. Capacitance Variation


TYPICAL CHARACTERISTICS

1e-06
VGS=10
VDS=64.0
1e-07
1e-08
1e-08
1e-09
1 10
100
R_G, Gate Resistance (Ohm)

Figure 7. Gate-to-Source Voltage vs. Total Charge

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

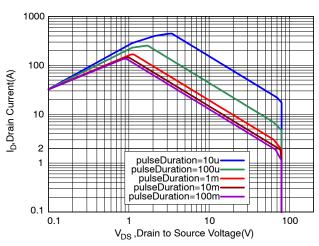
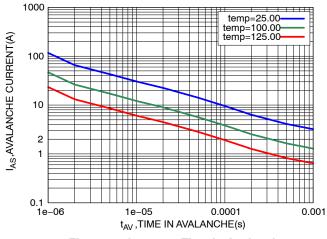



Figure 9. Diode Forward Voltage vs. Current

Figure 10. Maximum Rated Forward Biased Safe Operating Area

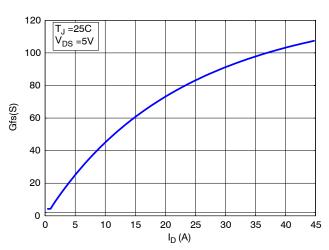
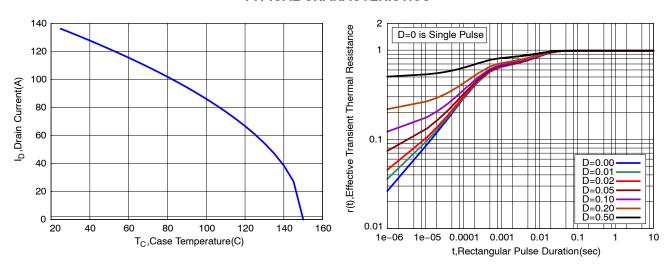


Figure 11. I_{PEAK} vs. Time in Avalanche

Figure 12. G_{FS} vs. I_D

TYPICAL CHARACTERISTICS



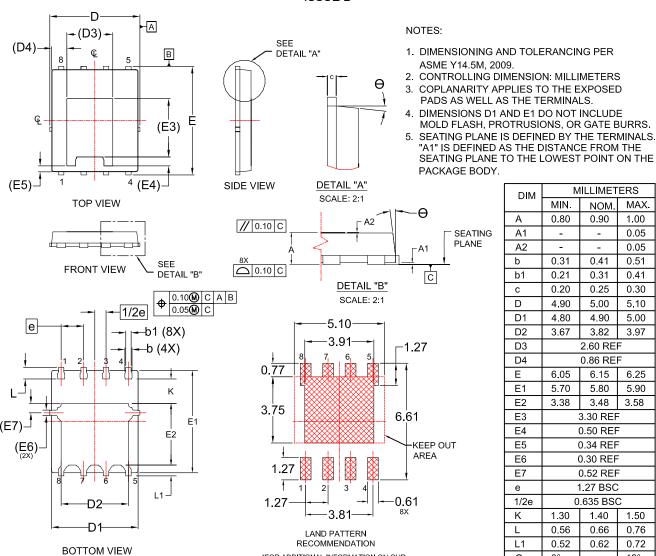

Figure 13. Maximum Current vs. Case Temperature

Figure 14. Thermal Response

PACKAGE DIMENSIONS

DFN8 5x6.15, 1.27P, DUAL COOL

CASE 506EG **ISSUE B**

OTHEL	OWEST	POINT	ON THE		
DIM	MILLIMETERS				
	MIN.	NOM.	MAX.		
Α	0.80	0.90	1.00		
A1	-	-	0.05		
A2	1	-	0.05		
b	0.31	0.41	0.51		
b1	0.21	0.31	0.41		
С	0.20	0.25	0.30		
D	4.90	5.00	5.10		
D1	4.80	4.90	5.00		
D2	3.67	3.82	3.97		
D3	2.60 REF				
D4	0.86 REF				
E	6.05 6.15		6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.58		
E3	3.30 REF				
E4	0.50 REF				
E5	0.34 REF				
E6	0.30 REF				
E7	0.52 REF				
е	1.27 BSC				
1/2e	0.635 BSC				
K	1.30	1.40	1.50		
L	0.56	0.66	0.76		

REFERENCE MANUAL, SOLDERRM/D. DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

*FOR ADDITIONAL INFORMATION ON OUR

PB-FREE STRATEGY AND SOLDERING DETAILS PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Ι 1

θ

0.52

0°

0.62

0.72

12°