乾坤科技股份有限公司

DOCUMENT : RH000000NH

REVISION : A3
PAGE : 1 OF 9

1/16W, 0402, High Precision Thick Film Chip Resistor

(Lead / Halogen Free)

1. Scope

This specification applies to 1.0mm x 0.5mm (0402) size, fixed metal chip resistors rectangular type for use in electronic equipment.

2. Type Designation

PFR05
$$X - XXXX - X NH$$

- (1)
- (2)
- (3)
- (4) (5)

Where

- (1) Series No.
- (2) Tolerance of TCR:

$$X = Jumper$$

Resistor refer to paragraph 3

(3) Nominal resistance value:

For example --

Three digits of number (E-24 Series)

$$000 = \text{Jumper} (0\Omega)$$

$$100 = 10\Omega$$

$$102 = 1k\Omega$$

Four digits of number (E-96 Series)

$$11R3 = 11.3\Omega$$

$$1131 = 1.13k\Omega$$

(4) Resistance tolerance :

 $X = \text{Jumper}(\text{Below } 50\text{m}\Omega)$

$$D = \pm 0.5\%$$

$$F = \pm 1.0\%$$

$$J = \pm 5.0\%$$

(5) NH = Sn plating (Lead free / Halogen free)

乾坤科技股份有限公司

DOCUMENT: RH000000NH

REVISION : A3
PAGE : 2 OF 9

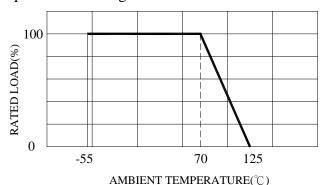

3. Electrical Specifications

Table 1.:

Power Rating**	Resistance Values	Resistance Tolerance	Resistance Range (Ω)	Temperature Coefficient of Resistance ppm/°C (code) *	Operating Temperature Range	Max. Operating Voltage***
1/16 W	E-24 series E-96 series	±0.5%(D)	10 ~ 97.6	$\pm 100 (R)$		50V
			100 ~ 1M	±50 (Q)		
			1K~1.8M	±25 (P)		
		±1.0%(F)	1.0 ~ 9.76	0 ~ 500 (S)	5.5 °0 .	
			10 ~ 97.6 1.02M ~ 10M	$\pm 100 (R)$	-55°C to +125°C	
			100 ~ 1M	±50 (Q)		
			10 ~ 10M	$\pm 200 (S)$		
	E-24 series $\pm 5.0\%$ (J)	+ 5.0%(I)	1.0 ~ 9.1	0 ~ 500 (S)		
		± 3.0%(J)	10 ~ 10M	$\pm 200 (S)$		

Note: *TCR "S" is standard parts, the other part can be make at request.

Note: **Package Power Temperature Derating Curve

AMBIENT TEMPERATURE(C)

Figure 1. : Power Temperature Derating Curve

Note: ***esistors shall have a rated DC or AC(rms.) continuous operating voltage corresponding to the power rating, as calculated from the following formula

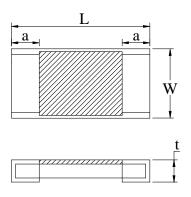
 $V = \sqrt{P \times R}$ Where V : Rated voltage (V)

P : Rated power (W)

R : Nominal resistance (Ω)

If the voltage so obtained exceeds the maximum operating voltage, this maximum voltage shall be the rated voltage.

Table 2. : Jumper:


Resistance Tolerance	Below 50 m Ω	
Rated current	1A	
Operating Temperature Range	-55°C to 125°C	

乾坤科技股份有限公司

DOCUMENT: RH000000NH

REVISION : A3
PAGE : 3 OF 9

4. Outline dimensions

Code Letter	Dimension	
L	1.0 ± 0.05	
W	0.50 ± 0.05	
t	0.35 ± 0.05	
a	0.2 ± 0.10	

Unit: mm

5. Life Tests

5-1 Electrical

Itama	Specification and Re	equirement	Test Method
Item	Resistor	Jumper	(Refer to JIS C 5201)
	\triangle R: \pm (1%+ 0.05 Ω) • TCR > 100ppm \triangle R: \pm (2%+ 0.1 Ω) Without damage by flashover, spark, arcing, burning or breakdown	Max. 50mΩ	 (1) Applied voltage: 2.5 x rated voltage or 2 x maximum operating voltage which ever is less (2) Test time: 5 seconds
Insulation Resistance Over 100 M Ω on Overcoat lay Over 1,000 M Ω on Substrate s			 (1) Setup as figure 2 (2) Test voltage: 50V_{DC} (3) Test time: 60 + 10 / -0 seconds
Voltage Proof	\triangle R: \pm (2%+ 0.1 Ω) Without damage by flashover, spark, arcing, burning or breakdown	Max. 50mΩ	(1) Setup as figure 2 (2) Test voltage: 100V _{AC} (rms.) (3) Test time: 60+10/-0 seconds

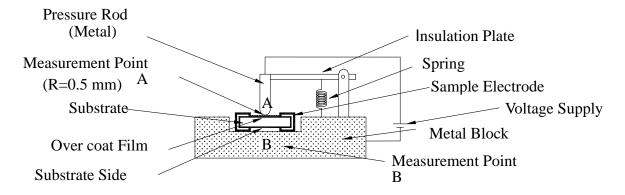


Figure 2 : Measurement Setup

乾坤科技股份有限公司

DOCUMENT: RH000000NH

REVISION : A3
PAGE : 4 OF 9

5-2 Mechanical

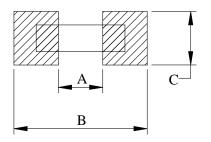
5-2 Mechanical			
Item	Specification and Re	equirement	Test Method
Item	Resistor	Jumper	(Refer to JIS C 5201)
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder		Solder bath: After immersing in flux, dip in $245 \pm 5^{\circ}$ C molten solder bath for 2 ± 0.5 seconds
Resistance to Solder Heat	\triangle R: \pm (1.0%+ 0.05 Ω) Without distinct deformation in appearance	Max. 50mΩ	 (1) Pre-heat: 100~110°C for 30 seconds (2) Immersed at solder bath of 270 ± 5°C for 10 ± 1 seconds (3) Measuring resistance 1 hour after test
Vibration	\triangle R: \pm (0.5%+ 0.05 Ω) Without mechanical damage such as break		 Vibration frequency: 10Hz to 55Hz to10Hz in 60 seconds as a period Vibration time: period cycled for 2 hours in each of 3 mutual perpendicular directions Amplitude: 1.5mm
Shock	\triangle R: \pm (0.25%+ 0.05 Ω) Without mechanical damage	ge such as break	 (1) Peak value: 490N (2) Duration of pulse: 11ms (3) 3 times in each positive and negative direction of 3 mutual perpendicular directions
Bending Test	\triangle R: $\pm (1.0\% + 0.05\Omega)$ Without mechanical damage such as break	Max. 50mΩ	Bending value : 3 mm for 30 ± 1 seconds

乾坤科技股份有限公司

DOCUMENT: RH000000NH

REVISION : A3
PAGE : 5 OF 9

5-3 Endurance


Item	Specification and Rec	quirement	Test Method	
Item	Resistor	Jumper	(Refer to JIS C 5201)	
Thermal Shock	\triangle R: \pm (1.0% + 0.05 Ω) Without distinct damage in appearance	Max. 50mΩ	 (1) Repeat 5 cycle as follows: (-55 ± 3°C,30minutes) → (Room temperature, 2~3 minutes) →(+125 ± 2°C,30minutes) →(Room temperature, 2~3 minutes) (2) Measuring resistance 1 hour after test 	
Moisture with Load	$\triangle R$: $\pm (5.0\% + 0.1\Omega)$ Without distinct damage in appearance Marking should be legible	Max. 50mΩ	 (1) Environment condition: 40 ± 2°C,90~95% RH (4) Applied Voltage: rated voltage (2) Test period: (1.5 hour ON →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (3) Measuring resistance 1 hour after test 	
Load Life	\triangle R: ± (5.0% + 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Test temperature: 70 ± 2°C (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) → (0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test 	
Low Temperature Store	\triangle R: \pm (5.0% + 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature: -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test 	
High Temperature Store	\triangle R: \pm (5.0% + 0.1 Ω) Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature: +125 ± 2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test 	

乾坤科技股份有限公司

DOCUMENT: RH000000NH

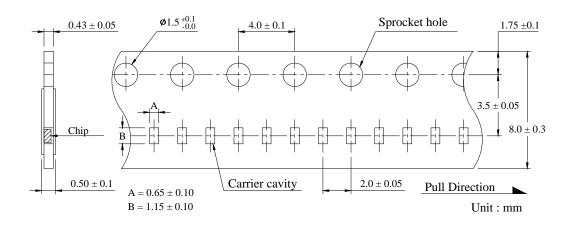
REVISION : A3
PAGE : 6 OF 9

6. Recommend Land Pattern Dimensions

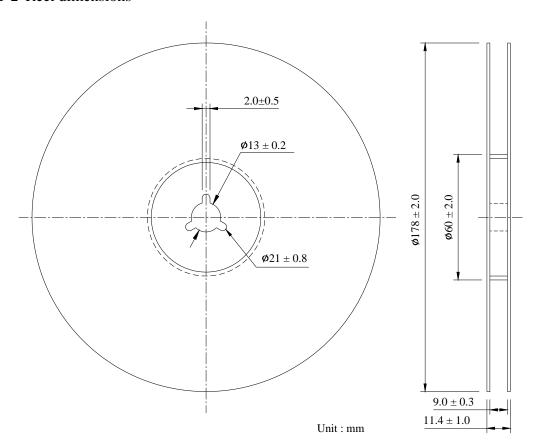
A	0.5	
В	1.5	
С	0.4~0.8	

Unit: mm

乾坤科技股份有限公司


DOCUMENT: RH000000NH

REVISION : A3
PAGE : 7 OF 9

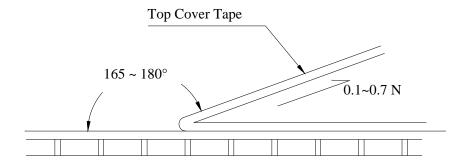

7. Packaging

7-1 Dimensions

7-1-1 Tape packaging dimensions

7-1-2 Reel dimensions

乾坤科技股份有限公司


DOCUMENT: RH000000NH

REVISION : A3
PAGE : 8 OF 9

7-2 Peel force of top cover tape

The peel speed shall be about 300 mm/minute

The peel force of top cover tape shall be between $0.1\ to\ 0.7\ N$

7-3 Numbers of taping

10,000 pieces/reel

7-4 Label marking

The following items shall be marked on the production and shipping Label on the reel.

7-4-1 Production Label

- (1) Part No.
- (2) Description
- (3) Quantity
- (4) Taping No.

7-4-2 Shipping Label

- (1) *Customer's name
- (2) *Customer's part No.
- (3) Manufacturer's part No.
- (4) Manufacturer's name
- (5) Manufacturer's country

*Note: Item (1) and (2) are listed by request

乾坤科技股份有限公司

DOCUMENT: RH000000NH

REVISION : A3
PAGE : 9 OF 9

8. Care note

8-1 Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen)

8-2 Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.